53 research outputs found

    Recovering Multiple Nonnegative Time Series From a Few Temporal Aggregates

    Full text link
    Motivated by electricity consumption metering, we extend existing nonnegative matrix factorization (NMF) algorithms to use linear measurements as observations, instead of matrix entries. The objective is to estimate multiple time series at a fine temporal scale from temporal aggregates measured on each individual series. Furthermore, our algorithm is extended to take into account individual autocorrelation to provide better estimation, using a recent convex relaxation of quadratically constrained quadratic program. Extensive experiments on synthetic and real-world electricity consumption datasets illustrate the effectiveness of our matrix recovery algorithms

    Scalable visualisation methods for modern Generalized Additive Models

    Full text link
    In the last two decades the growth of computational resources has made it possible to handle Generalized Additive Models (GAMs) that formerly were too costly for serious applications. However, the growth in model complexity has not been matched by improved visualisations for model development and results presentation. Motivated by an industrial application in electricity load forecasting, we identify the areas where the lack of modern visualisation tools for GAMs is particularly severe, and we address the shortcomings of existing methods by proposing a set of visual tools that a) are fast enough for interactive use, b) exploit the additive structure of GAMs, c) scale to large data sets and d) can be used in conjunction with a wide range of response distributions. All the new visual methods proposed in this work are implemented by the mgcViz R package, which can be found on the Comprehensive R Archive Network

    Day-ahead probabilistic forecasting for French half-hourly electricity loads and quantiles for curve-to-curve regression

    Get PDF
    The probabilistic forecasting of electricity loads is crucial for effective scheduling and decision-making in volatile and competitive energy markets with ever-growing uncertainties. We propose a novel approach to construct the probabilistic predictors for curves (PPC) of electricity loads, which leads to properly defined predictive bands and quantiles in the context of curve-to-curve regression. The proposed predictive model provides not only accurate hourly load point forecasts, but also generates well-defined probabilistic bands and day-long trajectories of the loads at any probability level, pre-specified by managers. We also define the predictive quantile curves that exhibit future loads in extreme scenarios and provide insights for hedging risks in the supply management of electricity. When applied to the day-ahead forecasting for French half-hourly electricity loads, the PPC outperform several state-of-the-art time series and machine learning predictive methods with more accurate point forecasts (mean absolute percentage error of 1.10%, compared to 1.36%–4.88% for the alternatives), a higher coverage rate of the day-long trajectory of loads (coverage rate of 95.5%, against 31.9%–90.7% for the alternatives) and a narrower average length of the predictive bands. In a series of numerical experiments, the PPC further demonstrate robust performance and general applicability, achieving accurate coverage probabilities under a variety of data-generating mechanisms

    Human spatial dynamics for electricity demand forecasting: the case of France during the 2022 energy crisis

    Full text link
    Accurate electricity demand forecasting is crucial to meet energy security and efficiency, especially when relying on intermittent renewable energy sources. Recently, massive savings have been observed in Europe, following an unprecedented global energy crisis. However, assessing the impact of such crisis and of government incentives on electricity consumption behaviour is challenging. Moreover, standard statistical models based on meteorological and calendar data have difficulty adapting to such brutal changes. Here, we show that mobility indices based on mobile network data significantly improve the performance of the state-of-the-art models in electricity demand forecasting during the sobriety period. We start by documenting the drop in the French electricity consumption during the winter of 2022-2023. We then show how our mobile network data captures work dynamics and how adding these mobility indices outperforms the state-of-the-art during this atypical period. Our results characterise the effect of work behaviours on the electricity demand

    Target Tracking for Contextual Bandits: Application to Demand Side Management

    Get PDF
    We propose a contextual-bandit approach for demand side management by offering price incentives. More precisely, a target mean consumption is set at each round and the mean consumption is modeled as a complex function of the distribution of prices sent and of some contextual variables such as the temperature, weather, and so on. The performance of our strategies is measured in quadratic losses through a regret criterion. We offer T2/3T^{2/3} upper bounds on this regret (up to poly-logarithmic terms)---and even faster rates under stronger assumptions---for strategies inspired by standard strategies for contextual bandits (like LinUCB, see Li et al., 2010). Simulations on a real data set gathered by UK Power Networks, in which price incentives were offered, show that our strategies are effective and may indeed manage demand response by suitably picking the price levels

    Clustering electricity consumers using high-dimensional regression mixture models

    Get PDF
    Massive informations about individual (household, small and medium enterprise) consumption are now provided with new metering technologies and the smart grid. Two major exploitations of these data are load profiling and forecasting at different scales on the grid. Customer segmentation based on load classification is a natural approach for these purposes. We propose here a new methodology based on mixture of high-dimensional regression models. The novelty of our approach is that we focus on uncovering classes or clusters corresponding to different regression models. As a consequence, these classes could then be exploited for profiling as well as forecasting in each class or for bottom-up forecasts in a unified view. We consider a real dataset of Irish individual consumers of 4,225 meters, each with 48 half-hourly meter reads per day over 1 year: from 1st January 2010 up to 31st December 2010, to demonstrate the feasibility of our approach
    • …
    corecore